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1. IntroductioP

The criterion, obtained by V- F. Gaposhkin [0-11, for a (weakly) stationary process to

satisfy the strong law of large numbers (SLLN) has had various extensions, in particular to

second order non-stationary harmonizable processes, (QG2], [R], iD]).-. Outside of the

L2 -framework, it has also been studied for Fourier transforms of independently scattered

symmetric a-stable (SaS) measures in [CHW]).: It is shown here that via this spectral

approach, neither the L2-requirement nor any distributional assumption are indispensable

in establishing the SLLN. Only the harmonic representation with respect to a bounded (in

a sense to be made precise) random measure is crucial. This is illustrated in the present

work, where we obtain conditions for the SLLN to hold for some classes of processes with

finite a•-momrent which, in addition, are Fourier transforms.

It is well known that stationary processes and unitary groups of operators are

interchangeable, and so are the corresponding strong law and pointwise ergodic theorem.

This type of duality between operators and processes carries over to our framework,

although in general, the operators are not shifts. It is, thus, also the purpose of our work

to obtain the pointwise ergodic theorem, for some new classes of operators between

La-spaces, 1 < a < +.- -

We now give a brief description of the content of this paper. In the next section, we

set the stage. We introduce the processes under study and also illustrate the scope of our

approach with various examples. Section 3 is the core of the paper, and ergodic properties

of processes are developed. These results recover some classical strong laws such as the

ones for orthogonal random variables, martingale difference processes, etc.. In section 4,

we adapt our framework to operators to give a criterion for the pointwise ergodic theorem

to hold for some new classes of operators between La-spaces. This also recovers some

classical results. In the last section, we discuss some random fields generalizations.

Acknowledgement: The reinterpretation of our results in an operator theoretic framework,
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i.e. Section 4, stemmed from conversations with Karl Petersen for which the author is

heartily thankful.

2. Preliminaries

Let (fl,B,?) be a probability space and let La(O',B,?) (La(?) for short) be the

corresponding space of complex valued random variables with finite a th-moment, 1 < a < 2

and let also L(S1,8,T) be the space of random variables. On L a(?) the norm, i.e.,

(el ' I)l,/a, is denoted by 11. 11 where C the expectation. Finally, throughout, K denotes a

generic absolute constant whose value might change from an expression to another.

We now recall some terminology and results which are in [HI-H3]. A (strongly)

continuous (norm) bounded process X : R - La(?) is (a,/)-bounded, 1 <- / < +x, if and

only if there exists a finitely additive Z : B0 (R) - L°(?) of bounded (a,O3)-variation

such that = I im -L.)eitdZ(ý) in La(?), uniformly on compact subsets of R,

and where Bo(R) are the Borel sets with finite Lebesgue measure. For 13 = +0, Z is

a-additive on the Borel sets B(R), the exponentials become Z-integrable, and

Iim I (1-'Ld)eitýUdZ(ý) = Jeit~dZ(t). For a = 2, (a,o)-bounded processes are also

known as (weakly) harmonizable and when eZ(.)Z(.) : B(R)xB(R) - C, extends to a

measure on B(R2) they are (Loive or strongly harmonizable). For Z orthogonally scattered,

i.e., CZ(A)Z---B) = 0 whenever A n B = €, A, B E B(R), the process X is stationary. For 1

< a < 2, a typical example of random measure Z is an independently scattered isotropic

SaS with finite control measure in which case, Z has finite (p,OD)-variation for any 1 _ p <

a. To illustrate the scope and the applicability of our results we now present some less

typical examples (we do consider the case a > 2 for future considerations on operators

given in Section 4). A discrete time orthogonal process X = {Xn} with 'IXnI 2 < K is

(2,2)-bounded (see [HiI). By taking i.i.d. Bernoulli (or Rademacher) random variables via
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Khintchine inequality we can get (a,2)-boundednesss, 1 S a < +®. For less "independent"

examples, let a > 2 and let X : I - La(?) be a norm bounded martingale difference

process. Then, by Burkholder's and Minkowski's inequality we have

N N 2
1=1 Pia i=1 i11a/

_ N 2 { ll i 2 lnila a/2

_ K supIIXni { IE IPi2I
1 i1

Again, X is (a,2)-bounded, but for a _ 2, hence, Xn = f indZ((), n E 1, where Z is

"dominated" by Lebesgue measure. In all these examples, X and Z can be recovered from

one another by inversion formulae.

Since a (a,O)-bounded process X is strongly continuous, we can assume that it is

(t,w)-measurable with locally integrable sample paths and the averages aTX(X) =

TJX(t,)dt, T > 0, W E Q, are well defined. We then say that X satisfies the SLLNJY-T

whenever lima TX() = 0 (lima T-- _Xn(w) = 0 in the discrete time case), for
T- oo N-n-N

almost all w (we will usually omit the reference to w, e.g., write aTX for aTX(W)).

We now state two majorizing lemmas which are needed thereafter. The proof of the

first one is a zero complexity extension (replacing Cauchy-Schwarz's inequality by H6lder's

inequality) of a result of Rousseau [R], which goes back to GMl and Koksma [GK], and so is

omitted. The second one, which for a = 2 is just one of the various form of the famous

Grothendieck's inequality, can be found in Pisier [P] and [H3].

We need some more notation. Given any integer p Ž 0, an integer n >_ 2 such that

p
2P < n < 2 P+1 has a unique binary decomposition n = 2P + + E P2-j, where =

j=r 1
(¢,..,p)E {0,l}p. Hence, to any such n, i.e., to any sequence e {0,l)p we can also
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associate the (finite) sequence
k

2P + 1 + IEj 2P-J, k=1,2,...,p

ak( 'P) p k=O

With these notations and if ak is short for ak(E,p), we have.

Lemma 2.1. Let {zj} be a sequence of complex numbers and let {tj} be a sequence of

positive numbers. Then. for any p > 1 and 1 < a < 2, we have
n Ia<(P t( -)-)a--l zP tka k yk z.

max E z.10 • E (k1 E).
2P<n<2P+l j=2P+l -k=l k=l (l,.,k )E{0,1} j=ak-l+l j

Lemma 2.2. Let the process X be norm bounded, strongly continuous and (a,®)-bounded,

1 < a < 2, with associated random measure Z. Then, there exists a finite positive measure v

such that

Iij fdZIa _ (f IfI f 2d) 1/2, (2.1)

for all f E L2(v) (the functions which are square-integrable with respect to dv).

It is clear, that whenever X is strongly continuous and (a,O3)-bounded, the Fourier

representation as well as the boundedness property give I im oTX = Z(O), in La(?). But,
T-4 o

it is also well know that, even in the stationary case, Z(O) = 0 a.s., is not a sufficient

condition for the SLLN to hold. Similarly, it is not because Lhe dominating v is (2.1) is,

say, the spectral measure of a stationary process satisfying the SLLN, that the dominated

X satisfies the SLLN. After all, (2.1) is just a norm estimate. However, this norm

estimate is a strong ingredient in obtaining a criterion for the almost sure convergence of

the ergodic averages.

To finish our preliminaries, we say that a dominating measure P in (2.1) is



® {-k-I<~ 2-}/
c//2-atomislic if E v{2 1<I 5 2 k}&a 2 < +®. It is clear that for a = 2, v is always

k=O
a/2-atomistic and such is also the case for I < a < 2 when dv~t) = v(t)dt, v E L f(R), I < y

0o0k&/2
_< +o, or when v is discrete with jumps Jk such that E _k < +O.

k=O

3. The Spectral SLLN

With the result of the previous section, our approach in proving the SLLN follows

classical paths. The first of which is another lemma showing that we can reduce the

problem to the dyadic subsequences. We prove our results only for the more interesting

situation of continuous time processes with also 03 = +®, discrete time result are obtainable

in a identical fashion. The case /3 < +a will be worth a separate statement (Theorem 3.6).

Finally, throughout this section, and unless otherwise stated, (a,oo)-bounded is short for

strongly continuous, norm bounded, (a,w) -bounded, with also I < a S 2.

Lemma 3.1. Let X be (a,a)-bounded with a/2-atomistic dominating measure, then

Iim max 1 0nXX-a 2 = 0, (a.s. ?).
P-'+® 2 P< n <2p+1 2

Proof. As in the harmonizable case (strong or weak, see Rousseau [R] or Dehay [D]), and

n
since anX - a pX = E (ojX - a j_X), applying Lemma 2.1 with its notation, we get

'?p j=2Pl I

C max IanX- pXI2
2P< n <2P+1

E tkl-)l"( E t k2k max k '61 orX - Ora " (3.1)

k=1 k-1 (f1 , ... ,kk)E{0,1} ak k-I

To prove the result, it is enough to show that C max I onX - apX2 'P is the general

2P< n _2p+
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term of a convergent series. Since X is (a,m)-bounded, for any T > 0 we have 0TX =

I(s --•)d(ý) and by (3.1) and (2.1), it is in turn enough to show that

P1 P Rlsin a n a 2 /2
a(t -1) ( t kk , - Si' aak-1 d ) ), (3.2)

k=l k+i ,+• kE(Ol -

is itself the general term of convergent series. To do so, and as for stationary or

harmonizable processes, we divide R into four pieces, { I ý - 2-P-1}, {2-P-1<1 <-2-P+k},

{2 -P+k< • CI 11, {11 C > 1}. We then use the triangle inequality and proceed to estimate

each one of the resulting four sums. The estimates over the four different regions are

similar and so we just give the details for, say, the second region. Since

sin ak sin ak-1 22 2 2 P-k)222p

s-n ak -1 < Klak-ak /l I I ak- I K2 ( /2I , we have

sin a k sin ak-l 2 "/2

f{J{2-P-1< 1 1 < 2-Plk} aký ak1• dvk)}

-2 K2-ak{ a{2_l'<II < 2-P+k d(•}/2

With the previous inequality and taking tk = tk, I < t < 20''-, we get

O p k sin aký sin ak-l 2 a/2
E Etk2 max (I•-pl< 2 -P+k} _akZ a d v(ý)}-=1 k=l cEJ{ {2--1+ _k k-l ý

_K E ( E. tk2k2 12° P-1 <I I 2P+k Jdt(•)}/)
p=p k=l k

OD EP tk2(l-a)k{ P c 2rdv• /2).
SK E ( E

p=l k=1 j=p-kJ{2-j-'< I • 2

<K t ( E t2(° 2-j-1<< II<2-JZ ) since a < 2.

p=l k=l j=p-k
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Now, by rearranging its terms the above series becomes

= K Z u{ 2 -J-y 1 ~1 <2--ia/2 j0 k tk2 (k-a)k
j=0 k=1 p=max(j,k)

< K ~~v{2-i-l<i 5<2-j)}/2 E (k+l)tk2 (l-a)k < +®, since vis a/2-atomistic.
j=0 k=1

Finally, {f_ t )1 )} 1 < {E-t(1-k-}-1, and the sum (3.2) with R replaced by

sin ak4 sin akl• 2
2--+k is thus finite. For the first region, we use

I j-- a k-l t

KI 121ak-ak-l 2 < KIfI22
2 (p-k) and proceed similarly. The third series can be

sin ak• sin al 2

estimated using sin - n ak-1-t 2 Klak-ak 2l-/<ak..lIak_112 -
asin ak sin k1ýak-ii

K 2(P -k ,2-2P/ j I .1 T o estim ate the last sum , w e use -,ia"s ak -1 -<

K/I ak_1 i2 < K2-2P/ I • 2 Thus (3.2) is finite, and the result follows. E

We now state the main result of this section, a criterion for the SLLN to hold for

(a,x)-bounded processes with a/2-atomistic dominating measure.

Theorem 3.2. Let X be (a,m)-bounded with random measure Z and a/2-atomistic

dominating measure. The following conditions are equivalent.

(i) For a.a. w, 1 i m aTX(w) exists.
T-•+a

(ii) For a.a. w, lim Z{[jl < 2-P}(w) exists.

Under either condition, and for a.a. w, I im cTTX = mrn Z{l I < 2-} = Z(O).

Proof. Again, as in the L2 --case (stationary or harmonizable)

aTX = (aTX- anXpX+) + (a2PX-ZI11 < 2-P}) + ZI11 < 2-P}.
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Since IIXtila < K, arguments similar to the ones of Proposition 1 in (R] gives

Si m sup IaTX-aX I = 0 a.s., and the first parenthesis converges to 0 a.s.. The
n-,® n<T<n+l
middle parenthesis is taken care of by the previous lemma. For the third parenthesis,

to conclude that J im or X(w) - Z { < 2-P}(w) = 0, a.s., we again wish to show that
p-++ 2

1 o2 X - Z {1I < 2-P}) is the general term of a convergent series. But, using the

triangle inequality as well as Lemma 2.2 we have,

E I ClaupX-Z {IM < 2-P)IO
p=1 2 ]

j s i n 2 P_1 2 d ) a / 2 
s i n 2 p ý 1 2 a,-p=1I [I{[1<2-P} 2Pý I + [1['1-2--P}[2)1dvI]/

To prove the result, it is thus again enough to show that both series converges. We

provide the details only for the first integral. Since sin 2PC _ 1 < K22PjI1 2, the firstI2P•[

sum is dominated by

p { {2'12-k-l< '( < 2-k} 1k12d&< })}c/2

p=l k=_ D -•• 2k° vt-k-1 A )a-k}/2

p=l k=p--K "0 2- k -k-1_ ~< -k/2k 2ap2

2PK E 2 -v{2 J[2 'jtj<2

k=p

< K • v{ 2-k-ilili<2 -k}a/2 + K • 2 -Gk{ 2-k-1i I<2-k)}/2 < .

k=l k=1
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si 2Pý 2 2

Using 1sin 2Pý I < K/12PýJ , the second sum can be estimated in a similar way. Thus,

Sirm (a X - Z { I I < 2-P}) = 0 (a.s. 7). Finally, (a,a)-boundedness via Lemma 2.2 give
p-. 2
I i m Z {f I J < 2-P} = Z(0) in Lc(?), and the result follows.
p- x

Before restating Theorem 3.2, in an essentially equivalent way, we need to

introduce some more notation. Let Ck = HJ{.Ik 1  I ( 2-d(ý)IIa and let Zk

ck-l{ (2-k-l-< J < 2 _k dZ())) for ck > 0 and Zk = 0 when Ck = 0, k > 1.

Theorem 3.3. Let X be (a,x)-bounded with random measure Z and a/2-atomistic

dominating measure. Then, X satisfies the SLLN if and only if one of the following

equivalent conditions holds.

(i) Fora.a. w, lim Z{fI I <2-P}(w)=0.
p-,+O

p
(ii) For a.a. w, I im E ckZk exists, and Z(0) = 0.

p-.+o k=1

Proof. In L"(7) and by (a,x)-boundedness, we haveJ{ < 1ý1 < 2-P dZ(,) =

<k dZ(ý) = E ckZk. Since by (a,®)-boundedness, Y = E CkZk E
k < 22} k=p k=1

p-i
La(QP), we also have = Z(0) + Y - Z CkZk (in La(?)), and the result{1 1 < 2-Jk=

follows from the previous theorem.

Remark 3.4. In the above results, 2 can be replaced by any integer _ 2. The

a/2-atomistic requirement is also not minimal since for "harmonizable" non stationary

stable processes, the condition: E v{2- <i,•[< 2-1 k ,5 ]-X,ý1}P/a < +O, I < p < a,
k=0

where V is the finite two dimensional "spectral" measure corresponding to the

independently scattered SoS random measure, will also do the job. We note too that for a
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general independently scattered Z, the above Zk are independent random variables. Hence,

N
since Ii m E CkZk = Z(0) (in L&(?)) and since by independence convergence in

N-,+o k=1
probability and almost surely of the series are the same, we have for a.a. w, Ii m Zf I <

p-+00

2-P}(w) = Z(0). Again, in the non-stationary stable harmonizable case,

E v{2-k-I<Il<2-k x ]-r,rI1P/a < +®, 1 < p < a, and Z(O) = 0 gives the SLLN. We
k=0

do not know, however, if the mere condition Z(0) = 0, is sufficient to give the SLLN.

Finally, by anialyzing the above proofs, it is also easily seen that under the less stringent

requirement: E ( E 2-2k V{2 -P-k-l< 2 -P-k})a/2 < +®, Theorem 3.2 and 3.3
p=l k=O

continue to hold. Again, we note that in the stable case this last condition can, as above,
D D 2_2k u{-n-k-1

be replaced by E ( E 2  2k <[ II2-n- ]-,])P/a < +O, 1< p <a.
n=l k=0

In our framework, the sufficient conditions given by Gaposhkin in the stationary case

or by Dehay in the weakly harmonizable case for the strong law to hold, become:

Theorem 3.5. Let X be (a,,)-bounded with a/2-atomnistic dominating measure with also

IIZ(O)la = 0. If there exists a finite positive measure von (R 2 , B(I• 2 )) such that

(i) IIZ(A)l1- < v(AxA), A E Bo(R)

(ii) I{0<<}(log 21og 2 .-I)a/ 2 (log21og 2 1• 1)a/2dv((,,r) < +o, for some b> 0.

Then, X satisfies the SLLN.

Proof. To prove the assertion, it is enough to show that the sequence Z{ II < 2-p)

converges with probability 1, and to do so, we again show that el Z{0 < I ýI < 2-P} 1a is

the general term of a convergent series. Our proof is only sketched since similar to the one

devised by Dehay [D], for a = 2. First, for 2 q < p < 2q+l, we have Z{ I I < 2-p} = Z(0)



+ Z{O < < 2-} - Z{2-p <- I14 < 2-2q ). But, by (i) and (ii) above with qo any

integer such that 2-2qo < b, we have if Aq {0 < Ifl < 2-2 q} and, if log denotes the

logarithm of base 2:

E IIZ(Aq)II•_<E v(AqxAq)
q=qo q=qoq

Hence, lim Z{0<I•i<2- 2 q} =0 a.s. For Z{2-~P I l <2-2q}, let Bk = {-ak w <

-k-}where ak is deflned as before, and let Cq - <-2 1 <2-q•Apyn

12 (lgo I ,/(ogo Applyin

Lemma 2.1 with tk 1 as well as (i and (ii) we get

+ ( max Z{2- II H <-}a)

q=o 2 < p_ 2 q+l
r-+oo

-ai

+~ q -- ( E W(CkmCk))• r. qaCq,,~ Cq)
+0 2k= q

Hence, with probability one, lim max Z{2- - I <2 } = 0.

q -+® 2 q< p<2 q+l

Remark 3.6. The construction given by Feder IF] can be easily adapted to give a, discrete
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time (a,2)-bounded (hence (o,c)-bounded) process X such that a X diverges on a

arbitrary set of positive measure. In fact, such X can be chosen with absolutely continuous

dominating measure dv(t) = v(t)dt, v E L (]-rn]) by also adapting the arguments in [G1].

We now present the SLLN for (a,/3)-bounded processes when 1 < / < +00, for which

the results are simpler.

Theorem 3.7. Let X be (a,/3)-bounded, 03 < +®, then X satisfies the SLLN.

Proof. From the very definition of (a,/)-boundedness (see [H3J), when 0 < +x we have

]j fdZII, < (f If(t)I 3 dt) 1 /+, for all f E L 3(R), hence, IIZ(O)II = 0. Furthermore X is the

uniform limit on compact sets of Ceskro averages, hence for any T > 0 we have o'TX =

I im A (1-_LL) s dZ(ý) = J,(sin T.)dZ(ý) (Z has finite (ot,O)-variation, 0 > 1,

hence L3 (R)-functions are Z-integrable and i e LT (R)). Now, repeating the steps in

Theorem 3.2 and 3.3, using also fldder's inequality give the result. M

Remark 3.8. When a = 0 = 2, e.g., for martingale difference or orthogonal processes, our

results are not optimal, in the sense that the rate of convergence can be improved. By

techniques similar to the ones in Theorem 3.7, or via Theorem 3.3 (ii) with an appropriate

extension of the classical Rademacher-Menchov theorem it can be shown that with

N
probability one, Ii m 7-2N,+l og3a.( 2 N+i)E =-NnM = 0, ( > 0. For / = +®, it can also

be shown with the above techniques and as in [Gil, [G2], [R]. and [D] for a = 2, that

I im (LogLog2T)-1/ 2oaTX = 0, with probability one. The LogLog speed being the best
T-- oo

possible. The various necessary or sufficient conditions given in the works mentioned

above admit also ci-counterparts. Finally, for stationary processes, Theorem 3.7

corresponds to the SLLN for processes with spectral densities f E LI+((R), ( > 0.
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4. The Pointwise Ergodic Thcorem

In this section, we now turn our attention to operators and introduce first some

definitions which parallel the corresponding notions for processes. Throughout this section

we replace our probability space (f,8,7) by a measure space (also denoted (fl,B,?)), and we

extend the range a beyond 2 and assume that 1 < a < +W.

Let B(LO) be the algebra of bounded linear operators on Loa(?) equipped with the

strong operator topology and let 11 '1 denote the usual norm on B(La). Throughout, let

also T : R - B(Lo) be an operator function, i.e., let T be bounded (sup JITtgjia S K, g
t

E L'(?)) and measurable (t - Ttg is strongly measurable). Since T is bounded,

f f(t)Ttdt is a well defined Lebesgue-Bochner integral for any f E L1(R). Recalling that

for 3 < +cc (resp. / = +a), 11. 11/3 is the norm on LO(R) (resp. on C0 (R)) we set.

Definition 4.1. An operator function T is (a,O)-bounded if there exists K > 0 such that

1 f(t)Ttdtll 5 K I1f 11 ,

for all f E L(3(R)v = { f E L1 (R) : 'f E LO(P) } (f E L'(X) when = w).

A function E : BO(R) - B(La) is called an operator measure whenever it is finitely

additive and a spectral measure if in addition it is multiplicative, i.e., E(AnB) =

E(A)E(B), A, B E Bo(P). The relation between operator and spectral measures is easy to

draw: an operator measure is a spectral measure if and only if it is projection valued (this

can be proved as in Helson [He]). Clearly, these projections are also commuting

projections.

Definition 4.2. An operator measure E has finite (a,/)-variation if 1E11I = sup{ lllE4IKA):
N

A E Be(R)} < +®, where IHJF4t(A) = sup{ 1 E l 1E(Ai)Jl :. {Ai}l C o(R) partition of A, a, E
i=
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N

i=1

For any g E L c(T), E given by E (A) = E(A)g, A E Bo(R), defines a random measure.

Furthermore, by uniform boundedness, IIIEIII(A) < +a if and only if for every g E L (?),
N

IIIEII(A) < +o where IIIEgII(A) = sup{ IIE aiE(Ai)gUa.: {Ail, c B~(• ) partition of A, a,
i 

E

N r
C, Ii=Elai iA 1 }. The integral f(()dE(ý) of the scalar function f with respect to the

operator measure E of bounded (a,3)-variation can now be defined as the element of B(La)

for which (. f(C)dE(ý))g = JRf(ý)dEg(ý), g E La(Y). A more direct definition, without any

appeal to the random measures Eg, can also be given using the norm I1 11. For E of

bounded (a,3)-variation (ý3 < +c), any f in L(3(R) is integrable with respect to E, while for

3 = +w, the Borel bounded functions are also E-integrable. Moreover, 11J f(ý)dE(ý)giIu <

1IFI11 Jlfljjljgjl, for f E LO(R) and g E La(7).

With the above definitions we can state our first result.

Theorem 4.3. An operator function T is continuous and (a,13)-bounded if and only if there

exists a (unique regular) operator measure E with finite (a,,3)-variation such that Tt

IliJm J eit~dE(ý) (in B(La) with the strong operator topology), uniformly on compact
A-•+D EA
subsets of R.

Proof. Let T be continuous and (a,o)-bounded, then for any g E La(?), {Ttg}t.R is an

(a,3)-bounded strongly continuous process. Thus, [H3, Theorem 3.2] (actually Theorem

3.2 there is stated in terms of the triangular kernel, but the proof carries over to the step

kernel case) there exists a (unique regular) random measure Z with finite (a,O)-variation

such that Ttg = i m Aeit~dZ (4), in La(?), uniformly on compact subsets of R.

Moreover, IIIZO_ K and IZ g(A)ll _ KlIgljo, for every A E•So(R). Hence, E: 5o(R)
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B(La) defined via E(A)g = Z (A), g E L a(7) satisfies all the stated requirements. For the

t i~
converse, let T = •+im [ t~dE(C) in the strong operator topology, uniformly on

A-.+m E-A

compact subsets of R. Then, again by Theorem 3.2 of [H3] and for any g E L0(?), {Ttg tEj

is strongly continuous with moreover i1f, f(t)Ttgdtll a IIIEJIIIf 114ll. Since IllEgJll _

1IIEill Ilg11,,, the result follows. a

Remark 4.4. Since L0(?) is weakly complete, we were able to replace the relative weak

compactness of the sets (i1j f(t)Ttgdtfl 11"•f110 < 1, f E L,(IF)v (f E LI(R) when 0 = +=)j,

g E La(?), by their boundedness. For / = +w, E can be defined on B(R) and is also

a-additive (in the strong operator topology). Hence, by dominated convergence and since

the exponentials are E-integrable we have I im A eit~dE(ý) - fReit~dE(C), t E i, and
A-+o+ -Ae

this recovers a result of Kluvinek [K]. For a = 2 and 4 = +®, T will be called

harmonizable even strongly harmonizable whenever 'E g(.)- (.) can be extended to a

complex measure on R

Corollary 4.5. Let T be continuous and (a,O)-bounded with associated operator measure

E. Then, T is additive, i.e., Tt+s = TtTs for all t, s E R, if and only if E is multiplicative.

Proof. Let E be multiplicative, then for any simple functions f1 and f2 with bounded

support, fe f If2dE = IRf f1dE fjf2dE. By (a,#)-boundedness, this equality can be extended

to Borel bounded functions, since they can be uniformly approximated by simple functions.
tiAAet+)d( IA i AeidE)It thus follows that T I ira = lirma eitdE• A

A- o+ '-A A-4+ ® -'-A --A

=imfeit dE(ý) I i M A eisdE(ý), since each individual limit exists. Hence, Tt+s
A-•+o A A-'+® -A

= TtTs. For the converse, since Tt+s = TtTs, and since the trigonometric polynomials of

period 2P are uniformly dense in C([-P,P]), we have for any fl, f2 continuous with compact
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support [-P,P] and for A large enough Jo f~f2dE = f, f 1dE J~f2dE. Hence, for any Borel

bounded f1 and f, (by the domination property, this is immediate for 3 < +ao). Now, we

can approximate a.s. a Borel bounded function by a bounded sequence of continuous

functions with compact support. Hence, For +3 = +, since E can be chosen to be

a-additive on B(R), the dominated convergence theorem for vector measures will allow us

to conclude. 0

For a = 2, when E is orthogonal projection valued, i.e., when for every A E B0(R) E(A)

is Hermitian, T is not only additive but also unitary, namely, TtTt* = Tt*Tt = I (I is the

identity operator). While, the martingale difference case corresponds to operator measures

whose values are differences of increasing orthogonal projections.

In general, and in contrast to unitary operators, (a,c)-bounded groups T (T is

additive with To = 1) are not shifts. This can be seen as follows. Let X = {XnlnEl be a

discrete time (a,w)-bounded process, 1 < a < +®, X n = E ein ýdZ(ý), and let Z be of

bounded variation. Then, for any trigonometric polynomial P, IIi_ P(O)dZ(O)IIa <

J__ IP(O)IdIZI(0) where IZI is the total variation measure. It is then not difficult to see

(as proved below) that X has a well defined shift if and only if the following condition

holds: if for some P, IIT P(8)dZ()I11 a = 0, then IP(O)IdIZ1(0) = 0. But for dZ(P)=

Z{,(Z1_•,0](0) - XZ0 ,T1(0)}d#, where Z E La(?), Z # 0, this cannot happen unless P = 0. To

prove the above claim, i.e., to verify that the shift is a well defined operator we need to

show that the above stated condition and Getoor's [G] (C1 ) condition are the same. Let

(CI) be satisfied, then IfJ P(8)dZ(8)IIf = 0 gives IJIr einP(8)dZ(e)Ita = 0 for all n E 1.

Hence, by the uniqueness of the Fourier transform, PdZ = 0 = I PIdIZI. Hence
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' Id 0IZ 0. Now if if__ P(O)dZ(O)Ia = 0, implies IP(P)IdIZ1(0) = 0. We have

,lnl)()O0)dZ(O)iIa _ -__ine p(0) I dI Z1(0) = 0, and Getoor's (C1 ) condition is verified.

After these preliminaries, we can now state the main result of this section. Again, we

say that T satisfies the pointwise ergodic theorem whenever for any g E La(P) the averages

SIT Ttg(w)dt, T > 0, w E f1, converge a.s. (7), with of course in discrete time, the

I N
integral replaced by 2.1 E Tng(w). We only state the result for 2 < a < +®, since the

n=-N

case a < 2 is already in section 3 and since the corresponding statement is slightly

different. For 2 < a < +x, the dominating inequality (2.1) becomes Ilfd gI a -

11gl a(ifI a+ fdv)/ , ( > 0 (see [P], the result there is actually not given for IR but for

a compact space and also not for operator measures, however, with arguments as in [H3]

the above stated inequality can be obtained).

Theorem 4.6. Let 2 < a < +®. Let T be (a,m)-bounded with representing operator

measure E and a/a+(-atomistic dominating measure. Then T satisfies the pointwise

ergodic theorem if and only if I i m E ( 0< Is < 2 -n =0, a.s. for all g E La(,). Let T
n--+m g

be (a,O)-bounded, •? < +x, T satisfies the pointwise ergodic theorem.

Proof. As in Theorem 3.2, 3.3, and 3.7.

For operators between Hilbert spaces, Theorem 4.6 has the following interesting

particular case. Let T: L2(7) -, L2 (?) be invertible with also sui IITill < +w, and let

T 0 = I. By a result of Sz.-Nagy [Sz.N], there exists a unitary operator U and an invertible

Hermitian operator Q such that T = Q- 1UQ. Hence, for any g E L2 (2), N E anTngI2 2
n--N

1 n,2 fA N •i# N

1iQ-1 12 11Ql1211 E anUngl 2  = KJ I E n _ KIgil2isup$ 2E a
n=--N r n---N , n--N
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and the group T is (2,ox)-bounded. In other words, power bounded and invertible power

bounded discrete groups on L 2(?) are exactly the Fourier transforms of the a-additive,

spectral measures from the Borel or-algebra B(I-r,r]) to B(L 2 ) (the (2,m)-bounded defining
N N ein # ni

property, i.e., 1 E_ an T gl 2 • KiigII2suPI F- a,.e trivially gives sup lITnj[ < +®).
n=-N 8 n=-N nE

Combining this observation with the previous results we get.

Corollary 4.7. Let T be an invertible bounded linear operator on L2 (7) such that

sun 11T nil < +w. Then, T is (2,®)-bounded with associated spectral measure E, and it

satisfies the pointwise ergodic theorem if and only if lim Eg{ 0 < I < 2- } -n 0, a.s.

for all g E L2 ().

Remark 4.8. It is not clear to us how Corollary 4.7 relates to the usual positivity

assumption encountered in ergodic theory. In particular, we do not know how it relates to

de la Torre's 1T) ergodic theorem, i.e., we do not understand why for T positive (Tf > 0

whenever f > 0) the condition l im E 0< 0 1 < 2-n 0, a.s. is always satisfied. A

better understanding (a characterization?) of the effects of positivity on the spectral

measure is certainly the key to this problem. Unfortunately, Theorem 4.6 does not give

any information about, say, the ergodicity of the isometries in La(,P), a # 2. It is shown in

[CH] that the class of moving averages of lAvy motion (for which the shift exists and is an

invertible isometry) and the (a,w)-bounded class are disjoints (the results in [CHI continue

to hold for shifts T such that sun ITTnil < +®). However, isometries and more generally

power bounded and invertible power bounded operators on La(O) do admit another type of

spectral representation (see Berkson and Gillespie [BG]) which for a = 2 corresponds to

(2,o)-boundedness. This spectral representation might help to study the ergodicity of such

operators on La(?), a # 2.

It is clear that there are various potential extensions and generalizations of the above
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results. These include, for example, the local ergodic theorem or the pointwise ergodic

theorem for "pseudo" Hermitian operators (see [K]), more generally for operators for which

some kind of spectral representation with respect to a non orthogonally scattered operator

measure holds. Except for random fields, to which our last section is devoted, we only

state as a sample, a result for which the passage from unitary to power bounded and

invertible power bounded operators is rather safe.

For unitary operators Jajte [J] proved that the convergence of the ergodic averages

and the existence of the ergodic Hilbert transform are equivalent. Combining Jajte's

arguments as well as the methods presented here, this equivalence holds more generally:

Corollary 4.9. Let T be an invertible bounded linear operator on L2 (?) such that
1 •1n-i

Sn JITnrill < +a. Then, li m E_, Tn= g exists a.s. 7, for every g E L2 (?) if and only if 1 i m
n3 N- aD n=O N-4 a

E Tng/n exists a.s. '?, for every g E L (P).
0< nI_<N

5. The Spoctral SLLN for Random Fields

We assume to the end of this paper that X = {Xt}tEmm is a strongly continuous, norm

bounded random field. It is easily seen that the univariate (aq)-boundedness, 1 _< a < 2,

definition given in [H3] carries over to the case of fields, in fact, even to the LCA

framework). Essentially as in [H31, it also follows that X is (a,fi)-bounded if and only if Xt
lim ( I Pit ' t....( I C- I )eitm~ m dZ(tj,...4) in

A=(A-,... A,)-.+00 -A1 .. )et ..1- )

La(?), uniformly on the compacts, where Z: 80(em) -- L°(?) has finite (a,13)-variation.

The multidimensional version of Grothendieck's inequality continue to hold (see [P]).

Lernma 5.1. Let the random field X be (a,w)bounded with associated random measure Z.

Then, there exists a finite positive measure v on Rm such that



20

JlmrnfdZIla <_ (JfmnfI 2 d )lI2, (5.1)

for all fE L2 (v).

For fields, averaging is always more delicate than for processes. Throughout, we

follow Gaposhkin [Gi], denote by IApI the volume of Ap, and study the averages, apX(w)

T 1 f X(t, w)dt, p > 0, wE 0, where X(t, w) = X(t 1, t 2, ... , tm, W), dt =TA7p Ap
dtldt 2'-.dtm, and where the A p satisfy the following three conditions:

(i) For each p, A is a bounded convex body containing the origin.

(ii) ForO<p <p<p' A CA and IAI - IAJ < IKp, Ip.0 P P Ap PI < PP

(iii) There exist two positive constants K1 and K2 such that the length d(p) of any chord

of Ap passing through the origin satisfies K1p 5 d(p) S K2P, P > Po > 0.

It is clear that n-dimensional spheres of radius p with center at the origin satisfy the

above three conditions. This is also true of n-dimensional cubes centered at the origin with

side of length p. Rectangles with do not flatten out also satisfy these conditions. We

finally say that X satisfies the SLLN whenever I im a X = 0, with probability one. Forp-#+O P

E Rm we set (2 + 2 + ... + 12)I/2, and then have.

Theorem 5.2. Let the random field X be (a,w)-bounded, with random measure Z and

a/2-atomistic dominating measure. Then, X satisfies the SLLN if and only if for almost all
w, Iir mZ{l~ < 2-P} (w) = 0.

fr4+OD

Proof. The proof requires only adjustments from the univariate results and so will only be

sketched. Again, apX = (oPX - anX) + (anX - a2PX) + (a2PX - Zf < 2-P)) +

Z{ I fl < 2-P}. Since, IIXtII, _ K, using condition (ii) we easily see that for n < p 5 n+l,
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IlapX -o nX11" < K{ 11/Ihp I 1/IAn 1101llonXllI + JAp - An 10/1 -Pn k PnI c) < Kn-°

Hence, with probability one, lIrn sup I a X-anXI = 0. For the third bracket, let
n-.® n<pn+l

K) = T-T.y f e't'ýdt, where e't = E eitj"j, then clearly a p X
p Ap j=1

JIRmK 2 p( )dZ(&). Since (ii) and (iii) give IK 2P - 11 < K2P'J whenever II <2-P,

and IK 2(P) • K/(2PI[f) for 2•j - 2-P, breaking Rm into {(Ij < 2-P} and {Jl -I 2-P),

we get using Lemma 5.1, E Cap' X - Z {(Il < 2-PJa < +x. Hence, for almost all w,
p=1 2P

uIrn a X - Z I < 2-P} = 0. For the middle bracket, we note that Lemma 3.1 withp-+.+ 2P

its notations continue to hold, we apply Lemma 5.1 and we also break Rm into four pieces:

{•I -I 2-P-'}, {2 -P--< _<II2-P+k}, {2 -P+k<I ,l < 1), {j1l > 1}. For I I S 2-p'-, we

have using (ii) and (iii) JKak () - Kak-1 ()J _ KJýI lak -ak_1. For, 2'-P-I< 1(l_2-P+k

we have by (i) I Kak() K IKak_l(ý) _< K Jak - akk- I/Iaklj. For, 2-P+k< _ 1, we use

the previous inequality and the fact that (i) and (iii) gives IKak ()I 5 KlakCI-1 to get

IKak(ý) - iKak-l(ý)I - Klak - ak-1 I/Iak-1III ak-1 1. Finally, when II > 1, again (i)

and (iii) gives IKak (ý)I _ KJak0-1, hence IKak () - Ka k-l()J S< Kiak-1 C-1. Now, as

in the proof of Lemma 3.1, these estimate lead, with the atomistic assumption, to four

convergent series and the result follows. 6

Remark 5.3. The requirement on the A P's are just set to ensure that the kernels Kp do

satisfy the right estimates and so, for any average for which such estimates hold, Theorem

5.2 continue to be true. It is also clear that Theorem 3.3, 3.5, and 3.7 admit

multidimensional versions and that as in [GI], the sequence {2"P} can be replaced by more

general sequences.
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